Gene discovery in glioma in the context of molecular reclassification of tumors

Khushboo Irshad, Akansha Jalota, Kunzang Chosdol, Subrata Sinha


Conventional classification of tumors, especially in terms of staging and grading is of immense importance for both prognostication as well as management strategies. However it is not a perfect system and there are many instances where tumor behaviour does not correspond to what is expected. In addition, with the onset of targeted therapy, the identification of the distinct molecular target in a subset of tumors becomes a marker of tumor behaviour as well as a target of therapy. This leads to the concept of molecular subclassification of tumors where molecular markers further refine and in some cases, alter conventional classification. We would be presenting this concept in relation to glial tumors, especially in the context of molecular markers discovered in our laboratory.


Glioma, histology, molecular markers, WHO grade, TCGA.

Full Text:



Louis DN, Ohgaki H, Wiestler OD, et al . ( 2007 ) . The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97-109.

Sarkar C, Jain A, Suri V (2009). Current concepts in the pathology and genetics of gliomas. Indian J Cancer 46: 108-119.

Gravendeel LA, Kouwenhoven MC, Gevaert O, et al. (2009). Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69: 9065- 9072.

Gupta T, Sarin R, Jalali R, et al. ( 2 0 0 9 ) . A p r a g m a t i c c l i n i c o p a t h o b i o l o g i c a l grouping/staging system for gliomas: proposal of the Indian TNM subcommittee on brain tumors. Neurol India 57: 247-251.

Nayak A, Ralte AM, Sharma MC, et al. (2004). p53 protein alterations in adult astrocytic tumors and oligodendrogliomas. Neurol India 52: 228-232.

Kleihues P, Ohgaki H (1999). P r i m a r y a n d s e c o n d a r y glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1: 44-51.

Taby R, Issa JP (2010). Cancer epigenetics. CA Cancer J Clin 60: 376-392.

Thon N, Kreth S, Kreth FW (2013). Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Ther 6: 1363-1372.

Dunn J, Baborie A, Alam F, et al. (2009). Extent of MGMT promoter methylation correlates with outcome i n g l i o b l a s t o m a s g i v e n temozolomide and radiotherapy. Br J Cancer 101: 124-131.

Gaur AB, Holbeck SL, Colburn NH, Israel MA (2011). Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol 13: 580-590.

Li X, Xin S, He Z, et al. (2014). MicroRNA-21 (miR-21) Post- Transcriptionally Downregulates Tumor Suppressor PDCD4 and Promotes Cell Transformation, Proliferation, and Metastasis in Renal Cell Carcinoma. Cell Physiol Biochem 33: 1631-1642.

Qiu X, Dong S, Qiao F, et al. (2013). HBx-mediated miR-21 upregulation represses tumor-suppressor function of PDCD 4 in hepatocellular carcinoma. Oncogene 32: 3296- 3305.

Wang Y, Gao X, Wei F, et al. (2014). Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene 533: 389-397.

Okada N, Lin CP, Ribeiro MC, et al. (2014). A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 28: 438-450.

Le MT, Teh C, Shyh-Chang N, et al. (2009). MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23: 862-876.

Nicolaides NC, O'Shannessy DJ, Albone E, Grasso L (2014). Co- development of diagnostic vectors to support targeted therapies and theranostics: essential tools in personalized cancer therapy. Front Oncol 4: 141.

Dahlrot RH, Hansen S, Jensen SS, et al. (2014). Clinical value of CD133 and nestin in patients with glioma: a population-based study. Int J Clin Exp Pathol 7: 3739-3751.

Parsons DW, Jones S, Zhang X, et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807-1812.

Ruano Y, Ribalta T, de Lope AR, et al. (2009). Worse outcome in primary glioblastoma multiforme with concurrent epidermal growth factor receptor and p53 alteration. Am J Clin Pathol 131: 257-263.

Das P, Puri T, Jha P, et al. (2011). A clinicopathological and molecular analysis of glioblastoma multiforme with long-term survival. J Clin Neurosci 18: 66-70.

Cao VT, Jung TY, Jung S, et al. (2009). The correlation and prognostic significance of MGMT promoter methylation and MGMT p r o t e i n i n g l i o b l a s t o m a s . Neurosurgery 65: 866-875.

Takahashi Y, Nakamura H, Makino K, et al. (2013). Prognostic value of isocitrate dehydrogenase 1, O6- m e t h y l g u a n i n e - D N A m e t h y l t r a n s f e r a s e p r o m o t e r methylation, and 1p19q co-deletion in Japanese malignant glioma patients. World J Surg Oncol 11: 284.

Guo Y, Sheng Q, Li J, et al. (2013). Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One 8: e71462.

Verhaak RG, Hoadley KA, Purdom E, et al. (2010). Integrated genomic analysis identifies clinically relevant s u b t y p e s o f g l i o b l a s t o m a characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98-110.

Yan Y, Zhang L, Xu T, et al. (2013). SAMSN1 is highly expressed and associated with a poor survival in glioblastoma multiforme. PLoS One 8: e81905.

Mellinghoff IK, Wang MY, Vivanco I , et al . ( 2005 ) . Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353: 2012- 2024.

Wong ET, Gautam S, Malchow C, et al. (2011). Bevacizumab for recurrent glioblastoma multiforme: a meta-analysis. J Natl Compr Canc Netw 9: 403-407.

Zhang W, Zhang J, Yan W, et al. (2013). Whole-genome microRNA expression profiling identifies a 5- microRNA signature as a prognostic biomarker in Chinese patients with primary glioblastoma multiforme. Cancer 119: 814-824.

Volinia S, Calin GA, Liu CG, et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U SA 103: 2257-2261.

Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857-866.

Lim LP, Lau NC, Garrett-Engele P, et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769-773.

Li R, Gao K, Luo H, et al. (2014). Identification of intrinsic subtype- specific prognostic microRNAs in primary glioblastoma. J Exp Clin Cancer Res 33: 9.

Chosdol K, Misra A, Puri S, et al. ( 2 0 0 9 ) . F r e q u e n t l o s s o f h e t e r o z y g o s i t y a n d a l t e r e d expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors. BMC Cancer 9: 5.

Kwaepila N, Burns G, Leong AS ( 2 0 0 6 ) . I mmu n o h i s t o l o g i cal localisation of human FAT1 (hFAT) protein in 326 breast cancers. Does this adhesion molecule have a role in pathogenesis? Pathology 38: 125- 131.

de Bock CE, Ardjmand A, Molloy TJ, et al. (2011). The Fat1 cadherin is overexpressed and an independent prognostic factor for survival in paired diagnosis-relapse samples of precursor B-cell acute lymphoblastic leukemia. Leukemia 26: 918-926.

Nishikawa Y, Miyazaki T, Nakashiro K, et al. (2011). Human FAT1 cadherin controls cell migration and invasion of oral squamous cell carcinoma through the localization of beta-catenin. Oncol Rep 26: 587-592.

Nakaya K, Yamagata HD, Arita N, et al . ( 2007 ) . Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene 26: 5300-5308.

Bendavid C, Pasquier L, Watrin T, et al. (2007). Phenotypic variability of a 4q34-->qter inherited deletion: MRKH syndrome in the daughter, cardiac defect and Fallopian tube cancer in the mother. Eur J Med Genet 50: 66-72.

Dikshit B, Irshad K, Madan E, et al. (2013). FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene 32: 3798- 3808.

Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell 144: 646-674.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.